--- title: "Spectral Analysis" always_allow_html: yes date: "`r Sys.Date()`" output: bookdown::html_document2 vignette: > %\VignetteIndexEntry{Spectral Analysis} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, fig.pos = 'H', comment = "#>" ) ``` ```{r, message=F, warning =F , echo = FALSE } library(webshot) library(plotly) ``` # Package description Infrared, near-infrared and Raman spectroscopic data measured during chemical reactions, provide structural fingerprints by which molecules can be identified and quantified. The application of these spectroscopic techniques as inline process analytical tools (PAT), provides the (pharma-)chemical industry with novel tools, allowing to monitor their chemical processes, resulting in a better process understanding through insight in reaction rates, mechanistics, stability, etc. Data can be read into R via the generic spc-format, which is generally supported by spectrometer vendor software. Versatile pre-processing functions are available to perform baseline correction by linking to the 'baseline' package; noise reduction via the 'signal' package; as well as time alignment, normalization, differentiation, integration and interpolation. Implementation based on the S4 object system allows storing a pre-processing pipeline as part of a spectral data object, and easily transferring it to other datasets. Interactive plotting tools are provided based on the 'plotly' package. Non-negative matrix factorization (NMF) has been implemented to perform multivariate analyses on individual spectral datasets or on multiple datasets at once. NMF provides a parts-based representation of the spectral data in terms of spectral signatures of the chemical compounds and their relative proportions. The functionality to read in spc-files was adapted from the 'hyperSpec' package. In this vignette we review the package functionality from loading data to NMF-analysis. # Basic functionality ## SpectraInTime-class Spectral data are represented as en S3-class which containt a data matrix together with meta data such as wavelengths, time points and preprocessing steps executed on the data. An artificial example is added in the package by which we will illustrate the basic functionality. ```{r, echo = TRUE, message = FALSE, results = TRUE} library( spectralAnalysis ) spectralEx <- getSpectraInTimeExample( ) str( spectralEx) ``` You can extract slots via specific methods: ```{r, echo = TRUE, message = FALSE, results = TRUE} dim( spectralEx) getExperimentName(spectralEx) getExtraInfo( spectralEx ) getStartTime( spectralEx ) getTimePoints( spectralEx ) getTimePoints( spectralEx , timePointsAlt = TRUE , timeUnit = "seconds" ) getTimePoints( spectralEx , timeUnit = "minutes" ) getTimePoints( spectralEx , timeUnit = "hours" ) getUnits( spectralEx ) getTimePoints( spectralEx , timePointsAlt = TRUE ) spectra <- getSpectra( spectralEx ) dim( spectra ) ``` One can modify slot using specific methods: ```{r, echo = TRUE, message = FALSE, results = TRUE} setTimePointsAlt( spectralEx ) <- getTimePoints( spectralEx ) - 200 ``` Using these methods, will avoid you to make some errors since validity testing is included. ```{r, echo = TRUE, message = FALSE, results = TRUE, error = TRUE} setTimePointsAlt( spectralEx ) <- getTimePoints( spectralEx ) * 5 ``` to get more information on the SpectraIntime class and its methods: ```{r , eval = FALSE } ?SpectraInTime ``` ## Reading in data The function *loadAllSPCFiles()* allows to read in all spectra data into a list: ```{r, echo = TRUE, message = FALSE, results = TRUE , eval = FALSE} allSPCFiles <- loadAllSPCFiles(directoryFiles) ``` ## Subsetting Different subsetting methods have been defined: * logical, integer (by order) * range `r()` function * closest element matching `e()` function * for time matching one can change the time unit between 'seconds' , 'minutes' and 'hours'. ```{r, echo = TRUE, message = FALSE, results = TRUE} print( r( 2.5 , 10.8) ) print( r( c(1 , 3 , 2 , 6 , 9 , 3 ) ) ) print( e( 1, 3 ,5 ,6 ,7 ,8 ) ) ``` Note that `r()` and `e()` work similar to the usual `c()` function: ```{r, echo = TRUE, message = FALSE, results = TRUE} # range subsetting spectralEx <- getSpectraInTimeExample() spectraSubset <- spectralEx[ r( 1000 , 30000 ) , r(130 , 135 ) ] getTimePoints( spectraSubset ) getSpectralAxis( spectraSubset ) spectraTimeSubset <- spectralEx[ r( 1000 , 30000 ) , ] spectraWavelengthSubset <- spectralEx[ , r(130 , 135 ) ] # other types of subsetting # logical spectraSubsetLogical <- spectralEx[ getTimePoints( spectralEx ) > 300 , getSpectralAxis( spectralEx ) <= 500 ] subsetLogTimeAlt <- spectralEx[ getTimePoints( spectralEx , timePointsAlt = TRUE ) > 0 , getSpectralAxis( spectralEx ) <= 500 ] # integer subsetInteger <- spectralEx[ c( 1, 5, 10) , c( 4 , 4 , 4 , 8 , 16) ] # closest element matching spectraSubsetElem <- spectralEx[ e( 1.234 , 3.579 ) , e( 200.001 , 466.96 ) , timeUnit = "hours" ] getTimePoints( spectraSubsetElem , timeUnit = "hours" ) getSpectralAxis( spectraSubsetElem ) ``` ## Summary ```{r, echo = TRUE, message = FALSE, results = TRUE , eval = TRUE } summarySpec <- summary( spectralEx ) str( summarySpec ) ``` ## Graphics ### One spectraInTime 4 different visualization options are implemented: ```{r plotBaseTime, fig.cap = "time view plot", echo = TRUE, message = FALSE, results = TRUE , eval = TRUE } data = getSpectraInTimeExample() library( plotly ) plot( x = data[ e( 1 , 2 , 3) , , timeUnit = "hours" ] , type = "time" , timeUnit = "hours" , timePointsAlt = FALSE ) ``` ```{r plotBaseWavelenght, fig.cap = "Wavelength view plot" , echo = TRUE, message = FALSE, results = TRUE , eval = TRUE } plot( x = data[ , e( seq( 200 , 400 , 50 ) ) ] , type = "spectralAxis" , timeUnit = "minutes" , timePointsAlt = TRUE ) ``` ```{r plotBaseContour, fig.cap = "Contour plot" , echo = TRUE, message = FALSE, results = TRUE , eval = TRUE } plot( x = data , type = "contour" , nColors = 200 , colors = "C" , timeUnit = "seconds", timePointsAlt = TRUE ) ``` Note: 3D-plot not run to save space: ```{r plotBase3D, fig.cap = c("3D plot" , "time view plot" , "wavelength view plot" , "contour plot"), echo = TRUE, message = FALSE, results = TRUE , eval = FALSE } plot( x = data , type = "3D" , timeUnit = "hours" , timePointsAlt = FALSE ) ``` note that subsetting with element matching is useful for the time and wavelength views. ### List of spectra in time We have also 2 options to plot a list of SpectraInTime-objects directly. Line plot: ```{r plotListLine, fig.cap = "Line plot for list of SpectraInTime" } listOfSpectra <- getListOfSpectraExample() plot( listOfSpectra , times = 1:3 , timeUnit = "hours" , colors = "A" ) ``` and contour plot: ```{r plotListContour, fig.cap = "Contour plot for list of SpectraInTime"} plot( listOfSpectra , timeUnit = "hours" , colors = "C" , type = "contour" ) ``` ## Time alignment Time alignment of *SpectraInTime* refers to translating and possibly subsetting the secondary time axis. Such that different experiments have a comparable time origin. Information to align *SpectraInTime* is contained in *processTimes* object for one experiment: ```{r, echo = TRUE, message = FALSE, results = TRUE } processTimes <- getProcessTimesExample() processTimes ``` and *processTimesFrame* for multiple experiments: ```{r, echo = TRUE, message = FALSE, results = TRUE } processTimesFrame <- getProcessTimesFrameExample() processTimesFrame ``` There are 3 methods to align a *SpectraInTime*: ```{r, echo = TRUE, message = FALSE, results = TRUE } spectra <- getSpectraInTimeExample() listOfSpectra <- getListOfSpectraExample() pathProcessTimes <- getPathProcessTimesExample() ex1 <- timeAlign( x = spectra , y = processTimes , cutCooling = TRUE , cutBeforeMinTemp = TRUE ) ex2 <- timeAlign( x = listOfSpectra , y = processTimesFrame , cutCooling = TRUE , cutBeforeMinTemp = TRUE ) ex3 <- timeAlign( x = listOfSpectra , y = pathProcessTimes , cutCooling = TRUE , cutBeforeMinTemp = TRUE , timeFormat = "%Y-%m-%d %H:%M:%OS" ) ``` # Real IR example We used 2 example spectra from a chemical synthesis monitored by an IR-probe to illustrate preprocessing and NMF-analyis. ```{r , echo = TRUE} exampleData1 <- readSpectra( system.file( "exampleData/exampleExperiment1.txt" , package = "spectralAnalysis") ) ``` ```{r plotReal, fig.cap = "Contour plot 2 real example experiments"} plot( exampleData1, type = "contour" ) ``` ## Pre-processing Pre-processing is applied to correct for any physical influences such as light scattering. It allows for better interpretation and more precise modeling. Usually several pre-processing steps are applied after each other and the ideal pre-processing procedure depends on the technology and the measured system. ### Selection of time and wavelength range Scientist can often indicate a relevant wavelength range. In this manner we can reduce the number of covariates. ```{r} dim( exampleData1 ) wavelengthRange <- r ( 800 , 1625 ) spectralDataSelect <- exampleData1[ r( 0 , 5 ) , wavelengthRange , timeUnit = "hours" ] ``` ```{r plot4, fig.cap = "Selected spectra of an example experiment", fig.align = "center", fig.pos = "h" , echo = FALSE } plot( spectralDataSelect , type = "contour" ) ``` ### Baseline correction Baseline correction implies fitting a global function for each measured spectra and subtracting it from the data. ```{r plot5, fig.cap = "Raw spectra example experiment", fig.align = "center", fig.pos = "h"} timesToShow <- e( 0.5 , 5 ) plot( spectralDataSelect[ timesToShow , , timeUnit = "hours"] , type = "time" ) ``` ```{r plot6, fig.cap = "Baseline corrected spectra example experiment", fig.align = "center", fig.pos = "h"} spectralDataBaseline <- baselineCorrect( spectralDataSelect , method = 'modpolyfit', degree = 4 ) plot( spectralDataBaseline[ timesToShow , , timeUnit = "hours"] , type = "time" ) ``` ### smoothing Smoothing or filtering in the wavelength domain can reduce measurement noise, the default smoothing is the Savitky-golay filter, which uses a local polynomial approximation, and which can be also be used to calculate derivatives in the wavelength domain. This can be useful to better detect peaks, especially in NIR-spectra where peaks are not clearly distinguishable otherwise. ```{r plot7, fig.cap = "Smoothed spectra example experiment", fig.align = "center", fig.pos = "h"} spectralDataSmooth <- smooth( spectralDataBaseline , window = 5 ) plot( spectralDataSmooth[ timesToShow , , timeUnit = "hours"] , type = "time" ) ``` smoothing has little influence here, because the measurements contain little noise. ```{r plot8, fig.cap = "Derivative spectra example experiment", fig.align = "center", fig.pos = "h"} spectralDataDerivative <- smooth( spectralDataBaseline , derivative = 1 ) plot( spectralDataDerivative[ timesToShow , , timeUnit = "hours"] , type = "time" ) ``` ### Normalization Normalization standardizes the intensities by: * the area under the curve * a reference peak, usually the peak of the solvent * standardization by some mean and scale function ```{r plot9, fig.cap = "Integral normalized spectra example experiment", fig.align = "center", fig.pos = "h"} spectralDataNormalized <- normalize( spectralDataSmooth , method = "integration" ) plot( spectralDataNormalized[ timesToShow , , timeUnit = "hours"] , type = "time" ) ``` ### Scatter correction Multiplicative scatter correction (MSC) removes scatter effects by regressing a spectra in the wavelength domain against a reference spectra and substracting the found intercept and dividing by the slope for each spectra ```{r, eval = FALSE } ?scatterCorrrect ``` ### Transfer preprocessing steps preprocessing steps can be replicated on new data: ```{r} allSpectraDataProcessed <- lapply( listOfSpectra , preprocess , with = spectralDataSmooth ) ``` ## NMF-analysis We will perform NMF-ananalysis on the smoothed and baseline corrected spectra for the time range: 0 - 5 hours assuning 3 chemical components. ```{r , results = FALSE} spectralExSelect <- spectralDataSmooth[ r( 0 , 5 ) , , timeUnit = "hours" ] nmfResult <- spectralNMF( spectralExSelect , rank = 3 , subsamplingFactor = 5 ) nmfObject <- getDimensionReduction( nmfResult , type = "NMF")$NMF ``` ```{r plotNMF, fig.cap = "NMF-trends on example experiments" } nmfTrends <- t( NMF::coef( nmfObject ) ) matplot( nmfTrends , type = "l" , x = getTimePoints( spectralExSelect , timeUnit = "hours" ) , xlab = "time in hours" ) ``` NMF-analysis is a useful exploratory tool to get insight in the chemical process. Including pure-component spectra can increase the quality of NMF-analysis. see ```{r, eval = FALSE } ?spectralNMF ```